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Abstract. Differential inequalities are derived for two cross-sectional energy fluxes. Integration establishes ex-
ponential growth and decay estimates for the cross-sectional mean square displacement, displacement gradient
and pressure. The conclusions relate to Saint–Venant’s principle for an incompressible elastic cylinder and more
generally to the Phragmén–Lindelöf principle and Liouville’s theorem. Other contributions to the literature are
briefly noted.
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1. Introduction

This paper considers the problem of a prismatic cylinder constrained at zero displacement
along its lateral sides and composed of a linear, homogeneous, isotropic, incompressible
elastic material. Data, in a sense to be precisely defined, is prescribed on the base, but no
a priori assumptions are required on the longitudinal asymptotic behaviour of the equilibrium
displacement, the (unknown) pressure or displacement gradients. The primary purpose is to
establish conditions which lead to estimates for the spatial growth and decay with respect
to axial distance of certain cross-sectional measures and also of the energy in a volume of
the cylinder. The decay estimates relate to the familiar Saint–Venant’s principle, while the
more complete alternative behaviour locates the treatment within the general context of a
Phragmén–Lindelöf principle.

The estimates, derived in terms of two cross-sectional energy fluxes, are independent of
the cylinder’s length which may be finite, semi-infinite or infinite. For simplicity, attention is
almost exclusively confined to the semi-infinite cylinder, although the infinite case is briefly
considered when the spatial behavour is analogous to Liouville’s theorem. Modification for
the finite cylinder will become self-evident. The approach, briefly described in [1], continues
the development presented ine.g. [2–5], and is an important variant of the method employ-
ing energy volume measures as the principal quantity. Such measures, to render the analysis
meaningful, usually are assumed bounded which conceals conditions pertaining to growth. Of
course, while the present primary purpose is to derive conditions for the alternative behaviour
of either growth or decay, the major portion of the paper inevitably is devoted to a discussion
of decay estimates. Even so, the approach produces new rates of growth and decay, and
furthermore provides decay estimates for the cross-sectional mean square of displacement,
pressure, displacement gradient, stress and for the energy flux.

All estimates derived involve exponential rates of growth or decay that depend only upon
the geometry of the cross-section. The corresponding amplitudes are a certain linear combina-
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tion of the total energy and its first-order analogue, for which upper bounds may be derived in
terms of the displacement and its normal derivative when specified (pointwise) over the base.
An alternative derivation of the decay estimates, that still employs cross-sectional measures,
avoids the introduction of a first-order energy and leads to a simplified decay rate and an
amplitude proportional only to the total energy which now may be bounded above by the
mean square displacement and its tangential derivatives over the base.

Previous allied studies of the elastic cylinder, surveyed in [6–9], are mainly confined to
compressible materials and apart from those already noted, to the derivation of decay estim-
ates. The decay rates, however, degenerate in the incompressible limit, which motivated a
treatment [10] simultaneously applicable to compressible and incompressible linear elasticity.
A separate investigation of the incompressible problem is given in [11]. Both studies are for
the corresponding free cylinder and thus are not strictly comparable with the present analysis
for the constrained cylinder. Nevertheless, the respective decay rates, although difficult to
exactly compare, appear not dissimilar. A more recent study [12] investigates exactly the same
problem as considered in this paper, but discusses only decay estimates. The method depends
upon a second-order inequality for the cross-sectional measure here denoted byJ (x3) (see
Equation (3.18)). While the calculations are somewhat less involved, the decay rate is inferior
to that obtained by the present analysis. Techniques similar to those developed here are applied
to the problem of the free cylinder in a forthcoming paper [13]. The two-dimensional problem
is treated in [14].

Other relevant investigations, reported notably in [1] and references there cited, concern
the steady-state Navier–Stokes flow, and hence Stokes flow, along a three-dimensional pipe
and, under restrictions on the flow, obtain decay rates which for Stokes flow are also similar
to those derived here. Precise comparison is again not straightforward. (See also [15] and the
cited references for the corresponding problem in plane Stokes flow).

Section 2 details the basic boundary-value problem and some of the standard inequalit-
ies subsequently required. Section 3 introduces the cross-sectional energy fluxes, discusses
relevant properties and derives the differential inequalities. Their integration is undertaken
in Section 4 which also establishes the conditions leading to the main growth and decay es-
timates. Section 5 deduces decay estimates for the cross-sectional mean-square displacement,
displacement gradients, stress and pressure, and the cross-sectional energy flux. The amplitude
in the decay estimate is bounded above in terms of the displacement and its normal derivative
specified over the cylinder’s base. When the amplitude involves only the total energy, then the
displacement alone needs to be prescribed. A brief summary together with some suggested
applications are included in the final section.

Throughout, the existence of a suitably smooth solution is assumed. The standard summa-
tion convention is adopted, along with a comma to denote spatial partial differention. Latin
and greek subscripts have the respective ranges 1, 2, 3, and 1, 2.

2. Specification of problem. Basic inequalities

Let � denote a semi-infinite prismatic cylinder of uniform bounded cross-sectionD whose
boundary is sufficiently smooth to admit applications of the divergence theorem. Rectangular
cartesian axes are selected with origin in the baseD(0) of the cylinder and with thex3-axis
parallel to the generators, so that� is given by

� = {x : (x1, x2) ∈ D,06 x3 <∞}. (2.1)



Incompressible linear elastic prismatic constrained cylinder113

LetD(x3) indicate the cross-section at a distancex3 from the base, and let�(z, z+h), z >
0, h > 0 denote the portion of� contained betweenD(z) andD(z+ h). Hence,

�(z, z+ h) = {x : (x1, x2) ∈ D, z 6 x3 6 x3+ h}. (2.2)

It is assumed that� is occupied by an incompressible, homogeneous linear elastic material
maintained in equilibrium under zero body-force and with the lateral sides of the cylinder held
fixed at zero displacement. The base of the cylinder is loaded in a sense defined later, while
the behaviour for asymptotically large values of the axial variable is not prescribeda priori
but is to be determined.

Accordingly, the displacementu(x) satisfies the equilibrium equation

µui,jj = p,i , x ∈ �, (2.3)

wherep(x) is the unknown hydrostatic pressure andµ the shear modulus; the incompressib-
ility condition becomes

ui,i = 0, x ∈ �; (2.4)

and the lateral boundary conditions are

ui = 0, x ∈ ∂D × (0,∞). (2.5)

It is assumed that on the base of the cylinder the distribution of displacement and tractions
does not produce singularities at the boundary∂D. Additionally it is assumed for simplicity
that over the base there holds∫

D(0)
u3(x1, x2,0)dx1 dx2 = 0. (2.6)

From (2.4), (2.5) and the divergence theorem it follows that:∫
D(x3)

u3 dx1 dx2 =
∫
D(0)

u3 dx1 dx2 = 0. (2.7)

The following inequalities, stated without proof, are required in the subsequent calcula-
tions. In both inequalities,w(x) is a continuously differentiable function on a plane (Lipschitz)
domainD.

2.1. POINCARÉ’ S INEQUALITY

Let

w(x) = 0, x ∈ ∂D. (2.8)

Then

λ1

∫
w2 dx1 dx2 6

∫
D

w,αw,α dx1 dx2, (2.9)



114 R. J. Knops

whereλ1 is the first eigenvalue for the fixed membrane problem forD; i.e.

8,αα + λ8 = 0, x ∈ D, (2.10)

8 = 0, x ∈ ∂D. (2.11)

A lower bound forλ1 is provided by the Faber–Krahn estimate [16, 17]

λ1 > πj2
0/|D|, (2.12)

where|D| is the area ofD andj0 is the smallest positive zero of the Bessel functionJ0(x).
When, in addition to condition (2.8), the functionw(x) also satisfies∫
D

w dx1 dx2 = 0, (2.13)

then

λ2

∫
D

w2 dx1 dx2 6
∫
D

w,αw,α dx1 dx2, (2.14)

whereλ2 is the smallest positive eigenvalue of the problem

8,αα + λ8 = k, x ∈ D, (2.15)

8 = 0, x ∈ ∂D, (2.16)∫
D

8dx1 dx2 = 0, (2.17)

for constantk. It follows thatλ1 6 λ2; a further estimate forλ2 is discussed ine.g., [18].

2.2. BABUSKA–AZIZ THEOREM [19]

Supposew(x) satisfies∫
D

w dx1 dx2 = 0. (2.18)

Then there exists a differentiable vector functionψα such that

ψα,α = w, x ∈ D, (2.19)

ψα = 0, x ∈ ∂D,
and a positive constantC depending only on the geometry ofD such that∫

D

ψα,βψα,β dx1 dx2 6 C
∫
D

(ψα,α)
2 dx1 dx2. (2.20)

Various bounds for the constantC are derived in [10], where it is also shown thatC > 1,
with the optimal valueC = 1 attained for a circle of arbitrary radius.
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3. Energy-flux functions and the associated differential inequalities

The behaviour of the displacement on� is obtained in suitable measure from that of two
functions shown in this section to satisfy two differential inequalities. These two inequalities
are optimally combined into a single one whose integration, undertaken in the next section,
leads to estimates on the behaviour of the energy contained in�(z,∞) and hence on the cross-
sectional mean square measure of the displacement. Both functions used in the inequalities are
related to energy flux across a cross-section of the cylinder.

PROPOSITION 3.1.The energy-flux function, defined by

H(x3) =
∫
D(x3)

(µuiui,3− pu3)dx1 dx2, (3.1)

satisfies for allx3 > 0 the condition

H ′(x3) = µ
∫
D(x3)

ui,j ui,j dx1 dx2 > 0, (3.2)

where a superposed prime denotes differentiation with respect to the axial variablex3. Fur-
thermore,H(x3) satisfies the inequality

|H(x3)| 6 µ

2

∫
D(x3)

{auα,βuα,β + bu3,αu3,α + duα,3uα,3+ eu2
3,3

+f uα,33uα,33} dx1 dx2, x3 > 0, (3.3)

where

a = c1λ
−1/2
1 + c−1

4 C1/2λ
−1/2
2 , (3.4)

b = c2λ
−1/2
2 + c3C

1/2(λ1λ2)
−1/2+ c4C

1/2λ
−1/2
2 , (3.5)

d = c−1
1 λ
−1/2
1 , (3.6)

e = c−1
2 λ
−1/2
2 , (3.7)

f = c−1
3 C1/2(λ1λ2)

−1/2, (3.8)

andci(> 0)i = 1, . . . 4 are positive constants to be determined later. The constantsλ1, λ2, C

are those appearing in(2.9), (2.14)and(2.20), respectively.
Proof. Leth > 0 be an arbitrary positive constant and letE(x3, x3+ h) denote the energy

contained in that portion of the cylinder enclosed between the cross-sections atx3 andx3+ h
from the base. Thus

E(x3, x3 + h) = µ
∫
�(x3,x3+h)

ui,j ui,j dx. (3.9)

The equilibrium equations, together with (2.4), (2.5), and the divergence theorem then yield
the identity

H(x3+ h)−H(x3) = E(x3, x3+ h), (3.10)
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from which (3.2) follows on differentiation.
To establish inequality (3.3), it is convenient to first separately consider each term on the

right side of (3.1). Application of Schwarz’s inequality, followed by the Poincaré inequalities
(2.9) and (2.14) gives∣∣∣∣∫

D(x3)

uiui,3 dx1 dx2

∣∣∣∣
=
∣∣∣∣∫
D(x3)

(
uαuα,3+ u3u3,3

)
dx1 dx2

∣∣∣∣
6
(∫

D(x3)

uαuα dx1 dx2

∫
D(x3)

uα,3uα,3 dx1 dx2

)1/2

+
(∫

D(x3)

u2
3 dx1 dx2

∫
D(x3)

u2
3,3 dx1 dx2

)1/2

6
(
λ−1

1

∫
D(x3)

uα,βuα,β dx1 dx2

∫
D(x3)

uα,3uα,3 dx1 dx2

)1/2

+
(
λ−1

2

∫
D(x3)

u3,αu3,α dx1 dx2

∫
D(x3)

u2
3,3 dx1 dx2

)1/2

. (3.11)

To treat the second term, note that (2.7) and the Babuska–Aziz inequality imply for each
fixedx3 the existence of a differentiable vector functionψα(x1, x2) such thatψα,α = u3 in D,
andψα = 0 on∂D. Hence,

−
∫
D(x3)

p u3 dx1 dx2 =
∫
D(x3)

pψα,α dx1 dx2 (3.12)

= µ
∫
D(x3)

ψαuα,33 dx1 dx2− µ
∫
D(x3)

ψα,βuα,β dx1 dx2, (3.13)

where the divergence theorem and (2.3) have been used. By virtue of Schwarz’s inequality,
the Poincaré inequality (2.9) and the Babuska–Aziz inequality (2.20), it next follows that

−
∫
D(x3)

p u3 dx1 dx2

6 µ
[(∫

D(x3)

ψαψα dx1 dx2

∫
D(x3)

uα,33uα,33 dx1 dx2

)1/2

+
(∫

D(x3)

ψα,βuα,β dx1 dx2

∫
D(x3)

uα,βuα,β dx1 dx2

)1/2
]

6 µ
(∫

D(x3)

ψα,βψα,β dx1 dx2

)1/2
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×
[(
λ−1

1 uα,33uα,33 dx1 dx2
)1/2+ (∫

D(x3)

uα,βuα,β dx1 dx2

)1/2
]

6 µ
(
C

∫
D(x3)

u2
3 dx1 dx2

) 1
2

×
[(
λ−1

1

∫
D(x3)

uα,33uα,33 dx1 dx2

)1/2

+
(∫

D(x3)

uα,βuα,β dx1 dx2

)1/2
]

6 µ
(
Cλ−1

2

∫
D(x3)

u3,αu3,α dx1 dx2

)1/2

×
[(
λ−1

1

∫
D(x3)

uα,33uα,33 dx1 dx2

)1/2

+
(∫

D(x3)

uα,βuα,β dx1 dx2

)1/2
]
. (3.14)

The insertion of (3.11) and (3.14) into (3.1) together with an application of the arithmetic-
geometric mean inequality then leads easily to (3.3).

PROPOSITION 3.2.The first-order energy flux, defined by

L(x3) = µ
∫
D(x3)

(uα,3uα,33+ u3,αu3,α3)dx1 dx2, (3.15)

satisfies for allx3 > 0 the conditions

(i) L(x3) = 1
2J
′(x3), where J (x3) = µ

∫
D(x3)

(uα,3uα,3+ u3,αu3,α)dx1 dx2, (3.16)

(ii) L′(x3) = µ
∫
D(x3)

ui,j3ui,j3 dx1 dx2 > 0, (3.17)

(iii) ν |L(x3)| 6 µ

2

∫
D(x3)

[
c5uα,3uα,3+ c6u3,αu3,α + ν2c−1

5 uα,33uα,33

+ν2c−1
6 u3,α3u3,α3

]
dx1 dx2,

(3.18)

whereν, c5, c6 are arbitrary positive constants to be chosen later.
Proof. Condition (i) is obvious.

To establish (ii), letE1(x3, x3+h) denote the first order energy contained in�(x3, x3+h),
whereh is a positive constant. Thus, by definition

E1(x3, x3 + h) = µ
∫
�(x3,x3+h)

ui,j3ui,j3 dx. (3.19)

As before, the equilibrium equations, (2.4), (2.5), the divergence theorem together with addi-
tional appeal to the prismatic property of the cylinder, lead to the identity:

L(x3+ h)− L(x3) = E1(x3, x3 + h), (3.20)
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which on differentiation yields expression (3.17).
Successive application of the Schwarz and arithmetic-geometric mean inequalities in (3.15)

enables inequality (3.18) to be easily proved.

PROPOSITION 3.3.Let the functionG(x3) be defined by

G(x3) = H(x3)+ νL(x3), (3.21)

whereν is a positive constant to be determined. ThenG(x3) satisfies the inequality

|G(x3)| 6 µ

2

∫
D(x3)

{
auα,βuα,β + (b + c6)u3,αu3,α + (d + c5)uα,3uα,3+ eu2

3,3

+ (f + ν2c−1
5 )uα,33uα,33+ ν2c−1

6 u3,α3u3,α3
}

dx1 dx2, (3.22)

where the constantsa, b, d, e, f are given by(3.4)–(3.8), respectively.
Proof. Inequality (3.22) follows immediately from (3.3) and (3.18).
The constantsci (i = 1, . . . , 6) andν are now chosen such that

a = (b + c6) = (d + c5) = e, (3.23)

(f + ν2c−1
5 ) = ν2c−1

6 = νe. (3.24)

A lengthy but straightforward calculation shows that an appropriate choice gives the values

e = (Q/2λ2)
1/2, (3.25)

ν = (C/λ1λ2)
1/2, (3.26)

where

Q =
(λ2

λ1
+ C + 1

)
+
√[(λ2

λ1
+ C − 1

)2+ 4C

]
+ (3+√5)

(
C
λ2

λ1

)1/2

. (3.27)

The following theorem is therefore proved on recalling (3.2) and (3.17).

THEOREM 3.1. The function

G(x3) = H(x3)+ νL(x3), (3.28)

where H(x3), L(x3), ν are given by (3.1), (3.15) and (3.26), satisfies the differential
inequality

|G(x3)| 6 e

2
G′, x3 > 0, (3.29)

where the constante is given by(3.25).

The integration of (3.29) is discussed in the next section.



Incompressible linear elastic prismatic constrained cylinder119

Finally, this Section considers properties of the functionJ (x3) defined in (3.16). Note that
J (x3) has also been introduced in [20], [6] to study the corresponding decay behaviour of a
laterally constrained prismatic cylinder composed of a linear isotropic compressible elastic
material and maintained in equilibrium by data specified over the base with the displacement
gradients asymptotically vanishing for large values of the axial variable. See also [12] for a
treatment of the incompressible problem. It is shown thatJ (x3) is not only convex, as here fol-
lows from (3.17), but also thatJ 1/2(x3) satisfies the condition of ‘generalised’ convexity. For
present purposes, it is sufficient to prove thatJ 1/2(x3) is convex. Thus, Schwarz’s inequality
applied to (3.15) gives

1

2

(
J ′
)2 6 2µ2

∫
D(x3)

(
uα,3uα,3+ u3,αu3,α

)
dx1 dx2

×
∫
D(x3)

(
uα,33uα,33+ u3,α3u3,α3

)
dx1 dx2

6 JJ ′′, (3.30)

where (3.16) and (3.17) have been used. It follows immediately that[
J 1/2(x3)

]′′ > 0, x3 > 0, (3.31)

providedJ (x3) 6= 0, x3 > 0.

4. Integration of main inequality

Integration of the main differential inequality (3.29) establishes the existence of alternative
behaviour on� similar to the classical Phragmén–Lindelöf theorem in potential theory. Fur-
thermore, since (3.29) depends only on the variablex3, it is valid irrespective of the length of
the cylinder and hence in particular holds on a (prismatic) cylinder of infinite length. In this
case, it is shown that only the trivial displacement exists in the class of bounded energies, a
result analogous to Liouville’s theorem.

Conclusions are derived in a succession of Propositions.

PROPOSITION 4.1.Suppose conditions on the cylinder’s base are such that

G(0) > 0. (4.1)

ThenG(x3) satisfies the following estimate

G(x3) > eγ x3G(0), x3 > 0. (4.2)

whereγ = 2/e, ande is given by(3.25).
Proof. By properties (3.2), (3.17), it follows from (4.1) that

G(x3) > 0, x3 > 0. (4.3)

Hence, the appropriate component of inequality (3.29) gives

γG(x3) 6 G′(x3), x3 > 0, (4.4)
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which on integration yields (4.2).

REMARK 4.1. Condition (4.1) together with (3.10) and (3.20) implies the unboundedness of
energies on�. That is

lim
h→∞
{E(x3, x3+ h)+ νE1(x3, x3+ h)}

does not exist.
Condition (4.1) is not the only one inducing energies to become unbounded on�(x3, z) as

z→∞. Indeed, letz1 > 0, z2 > 0 and suppose

H(z1) > 0, L(z2) > 0. (4.5)

ThenG(z) > 0, wherez = max (z1, z2), and hence (4.4) holds forx3 > z. Integration
immediately gives

G(x3) > G(z)expγ (x3− z), x3 > z, (4.6)

and the conclusion follows.
Less trivial conditions yielding unbounded energies are provided by the next two results.

PROPOSITION 4.2.Let z > 0 be fixed, and suppose thatH(z) > 0. Furthermore, suppose
thatL(x3) 6 0, for all x3 > 0.

Then the limit

lim
h→∞

E(x3, x3 + h) (4.7)

does not exist.
Proof. By (3.2),H(x3) > 0 for x3 > z, and hence from (3.3) it may be concluded that

H(x3) 6
µ

2

∫
D(x3)

(
auα,βuα,β + bu3,αu3,α + duα,3uα,3+ eu2

3,3

)
dx1 dx2

+f
2
L′(x3), (4.8)

where the constantsa, b, d, e, f are given by (3.4)–(3.8) but withci, i = 1, . . . ,4 as yet
unspecified.

Set

c4 = 1
2c
−1
2 C−1/2, c1 = c2

(
λ2

λ1

)1/2

, c2 =
(
λ2

λ1
+ 2C

)−1/2

, (4.9)

and letc3 be chosen sufficiently large to satisfy

c3 >
(
λ1

C

)1/2(
λ2

2λ1
+ C − 1

)
c−1

2 . (4.10)
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Thena = d = e 6 b and (4.8) becomes

H(x3) 6
b

2
H ′(x3)+ f2L

′(x3), x3 > z, (4.11)

which, sinceL(x3) 6 0, x3 > 0, may be re-written

06
(
e−δx3H

)′ + f
b

(
e−δx3L

)′
, x3 > z, (4.12)

whereδ = 2/b. Integration of (4.12) then gives

eδ(x3−z)
[
H(z)+ f

b
L(z)

]
6 H(x3), x3 > z, (4.13)

and the conclusion follows from (3.10) provided that

bH(z)+ fL(z) > 0. (4.14)

Condition (4.14) can always be ensured by choosingc3 sufficiently large.

PROPOSITION 4.3.Let z > 0 be fixed and suppose thatL(z) > 0. Suppose further that
H(x3) 6 0, x3 > 0. Then the limit

lim
h→∞E1(x3, x3 + h) (4.15)

does not exist.
Proof. It follows by hypothesis and (3.17) thatL(x3) > 0, x3 > z. Hence, inequality (3.18)

leads to

L(x3) 6
c5

2
H ′(x3)+ c

−1
5

2
L′(x3), x3 > z, (4.16)

where the choiceν = 1, c5 = c6 has been taken, so that

06 c2
5

(
e−c5x3H

)′ + (e−c5x3L
)′
, x3 > z. (4.17)

Integration gives

ec5(x3−z) [c2
5H(z)+ L(z)

]
6 L(x3), x3 > z, (4.18)

which implies the conclusion on takingc5 to be sufficiently small.

REMARK 4.2. The conditions of Proposition 4.3 also imply the nonexistence of the limit
(4.7). This result is proved by noting that the functionJ (x3), defined in (3.16), satisfies

06 J (x3) 6 H ′(x3), x3 > 0, (4.19)

By hypothesisL(x3) > 0, x3 > z, and henceJ (x3) > J (z). Insertion into (4.19) then gives
after an integration

(x3− z)J (z) < E(x3, z), x3 > z, (4.20)
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and the conclusion follows.
Indeed, a slightly improved result is possible:

PROPOSITION 4.4.Let z > 0 be fixed and supposeL(z) > 0. Then the limit(4.7) does not
exist.

Proof. SinceL(z) > 0 impliesL(x3) > 0, x3 > z, there existsz1 > z such thatJ (x3) >

0, x3 > z1. Hence (3.31) is valid onx3 > z1, and integration yields

J (x3) >
[
J (z1)+ (x3− z1)

2
J ′(z1)

]2

/J (z1). (4.21)

But J (x3) 6 H ′(x3) and a further integration proves the Proposition.
The results so far describe conditions under which the solution in various measures pos-

sesses a growth behaviour and for which the energiesE(x3,∞), E1(x3,∞) are unbounded
for anyx3 > 0. An immediate implication is that solutions in the class of bounded energies
E,E1 must satisfy the conditions

H(x3) < 0, L(x3) < 0, x3 > 0. (4.22)

Inequality in (4.22) is strict since ifH(z1) = 0 for somez1 > 0, thenH(x3) ≡ 0 for x3 > z1

otherwiseH(z3) > 0 for x3 > z1 and Proposition 4.2 contradicts the assumed boundedness of
E. Hence by (3.2) and the boundary conditions, the displacement is identically zero. Similarly,
if L(z2) = 0 for somez2 > 0, thenL(z3) = 0, for x3 > z2, otherwiseL(x3) > 0 for x3 > z2

and Proposition 4.4 provides a contradiction. It then follows from (3.17) and the boundary
conditions thatui = ui(xα) which must again be identically zero in the class of solutions with
bounded energyE. Strict inequality in (4.22) excludes these trivial cases.

The next series of results establishes various decay estimates for solutions in the class of
bounded energies. It is convenient to introduce the notation

E(x3) ≡ E(x3,∞), E1(x3) ≡ E1(x3,∞). (4.23)

THEOREM 4.1. In the class of bounded energiesE(0), E1(0), the solution to(2.3)–(2.6)
satisfies the decay estimate

−G(x3) 6 −G(0)e−γ x3, x3 > 0, (4.24)

where the functionG(x3)(< 0) is defined by(3.28), the positive constantγ = 2/e, ande is
given by(3.25).

Proof. Since the energies are assumed bounded, it follows that (4.22) holds, orH(x3) =
L(x3) = 0 for somex3 > z > 0, when (4.24) is trivially satisfied. Hence,G(x3) < 0, x3 > 0,
and thus (3.29) yields

−γG(x3) 6 G′(x3), x3 > 0, (4.25)

from which (4.24) follows by integration.
In the form (4.24), the decay estimate does not readily provide useful information and

hence the next section of this paper is devoted to the derivation from (4.24) of more meaningful
decay estimates.



Incompressible linear elastic prismatic constrained cylinder123

REMARK 4.3. Since the derivation of the basic inequality (3.29) involves only cross-sectional
integrals, its validity is unaffected by the length of cylinder and therefore (3.29) applies to a
cylinder of finite and infinite length. Integration of (3.29) in these circumstances is accom-
plished in the manner already described. As an example, consider the cylinder of infinite
length. It may easily be shown that the only displacement existing in the class of bounded ener-
giesE(0), E1(0), identically vanishes. Thus, suppose for arbitraryz,G(z) 6= 0. LetG(z) > 0.
Then (4.6) establishes a contradiction. Thus, letG(z) < 0. ThenG(x3) 6 G(z) < 0, x3 6 z,
and hence (4.25) holds forx3 6 z. Integration gives

−G(x3) > −G(z)eγ (z−x3), x3 6 z, (4.26)

which again leads to a contradiction. Thus,G(x3) ≡ 0,−∞ < x3 < ∞, from which the
conclusion follows.

5. Deductions from the basic decay estimate

Inequality (4.24) implies that

lim
x3→∞

H(x3) = lim
x3→∞

L(x3) = 0, (5.1)

and on recalling (3.10), (3.20) and the definitions (4.23), it follows that (4.24) may be equiva-
lently written as

E(x3)+ νE1(x3) 6 [E(0)+ νE1(0)]e−γ x3, x3 > 0, (5.2)

which in turn implies that

lim
x3→∞

∫
D(x3)

ui,j ui,j dx1 dx2 = lim
x3→∞

∫
D(x3)

ui,j3ui,j3 dx1 dx2 = 0. (5.3)

Poincaré’s inequalities then show that

lim
x3→∞

∫
D(x3)

uiui dx1 dx2 = 0,

and hence∫
D(x3)

uiui dx1 dx2 = −2
∫
�(x3,∞)

uiui,3 dx

6 2

(∫
�(x3,∞)

uiui dx
∫
�(x3,∞)

ui,3ui,3 dx

)1/2

6
(
λ

1/2
1 µ

)−1
E(x3)

6
(
λ

1/2
1 µ

)−1
[E(0)+ νE1(0)] e−γ x3, (5.4)

by virtue of Schwarz’s inequality, the arithmetic-geometric mean inequality and (5.2). Hence,
the displacement in cross-sectional mean square measure has an exponentially decreasing
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upper bound which provides the alternative behaviour in a Phragmén–Lindelöf principle. A
similar calculation shows that∫

D(x3)

ui,j ui,j dx1 dx2 6 2 [E(0)+ νE1(0)] e−γ x3, x3 > 0. (5.5)

Let the linear strain and rotation be defined as usual by

eij = 1
2

(
ui,j + uj,i

)
, ωij = 1

2

(
ui,j − uj,i

)
. (5.6)

Then

ui,j ui,j = eij eij + ωijωij , (5.7)

so that (5.5) yields corresponding decay estimates for the cross-sectional mean squares of the
strain and rotation.

An estimate for the pressure is obtained from an inequality derived in [21] which when
modified to the present circumstances becomes∫

D(x3)

p2 dx1 dx2 6 k1

∫
D(x3)

uiui dx1 dx2+ k2

∫
D(x3)

ui,αui,α dx1 dx2, (5.8)

wherek1, k2, are computable positive constants. Substitution of (5.4) and (5.5) then leads to∫
D(x3)

p2 dx1 dx2 6
[
k1

(
λ

1/2
1 µ

)−1+ 2k2

]
[E(0)+ νE1(0)] e−γ x3, x3 > 0. (5.9)

A decay estimate for the cross-sectional mean square of the stress, defined to be

σij = 2µeij − pδij , (5.10)

whereδij is the Kronecker delta, follows immediately from (5.5), (5.7) and (5.9).
A pointwise estimate for the displacement may be derived by noting from (2.3) thatui(x)

is biharmonic and then employing a mean-value theorem which states:

LEMMA [22]. Letv(x) be a biharmonic real valued function in the three-dimensional region
3. Supposev ∈ L2(3), and letd be the shortest distance of the pointx ∈ 3 from ∂3. Then
the following estimate holds:

|v(x)| 6 1·915d−3/2

(∫
3

|v(y)|2 dy

)1/2

(5.11)

The proof uses spherical means to express the pointwise value of the biharmonic function
in terms of its average values over the volume of two spheres, one dilated from the other.
Minimisation of the dilation factor leads to the multiplicative constant in (5.11).

To apply the lemma, consider the pointx ∈ �, and selectz to satisfy 06 z 6 x3. Then
x ∈ �(z,∞), and (5.11) gives

|ui(x)|2 6 (1·915)2d−3
∫
�(z,∞)

uj (y)uj (y)dy, (5.12)
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whered now denotes the shortest distance ofx from ∂�(z,∞). Poincaré’s inequality together
with (5.2) then leads to

|ui(x)|2 6 (1·915)2d−3λ−1
1

∫
�(z,∞)

uj,αuj,α dy

6 (1·915)2(d3λ1µ)
−1E(z)

6 (1·915)2(d3λ1µ)
−1[E(0)+ νE1(0)]e−γ (x3−d),

the required estimate ford 6 dist(x, ∂D). Otherwise consider�(x3− d,∞).
The estimate degenerates as the pointx approaches a point of∂�, which is not unreas-

onable since the lemma is valid irrespective of the smoothness of the boundary. Irregular
boundary points create in their neighbourhood singularities in the values of the displacement
and its gradient consistent with the estimate. On the other hand, it is possible to establish a
corresponding estimate valid near regular boundary points, and a proof is constructed in [22].

It remains to express the energiesE(0), E1(0) in terms of the data defined on the base.
Only the case in whichui(xα,0) andui,3(xα,0) are specified subject to (2.6) is treated.

A bound forE(0) may be obtained by the method described in [2] which gives

E(0) 6
(∫

D(0)
ui,αui,α dx1 dx2

∫
D(0)

uiui dx1 dx2

)1/2

. (5.13)

Next, observe that since the cylinder� is assumed to be prismatic, (2.3)–(2.5) remain valid
for ui,3(x) and hence repetition of the argument leading to (5.13) yields the following upper
bound forE1(0):

E1(0) 6
(∫

D(0)
ui,3αui,3α dx1 dx2

∫
D(0)

ui,3ui,3 dx1 dx2

)1/2

. (5.14)

The second integral on the right in (5.14) may be bounded in terms of tangential derivatives
overD(0) of ui(xα,0) by means of the conservation law∫

D(x3)

(
σijui,j − 2σi3ui,3

)
dx1 dx2 = constant, x3 > 0, (5.15)

and the derived asymptotic behaviour (5.3), (5.9), whereσij is given by (5.10). It then follows
that

µ

∫
D(x3)

uα,3uα,3 dx1 dx2 = −µ
∫
D(x3)

uα,αuβ,β dx1 dx2

+µ
∫
D(x3)

ui,αui,α dx1 dx2 − 2
∫
D(x3)

puα,α dx1 dx2. (5.16)

Hence, from (5.8) it is possible to conclude that

µ

∫
D(x3)

ui,3ui,3 dx1 dx2 6 µ

∫
D(x3)

ui,αui,α dx1 dx2

+2

[
k1

∫
D(x3)

uiui dx1 dx2 + k2

∫
D(x3)

ui,αui,α dx1 dx2

]1/2

×
[∫

D(x3)

uα,αuβ,β dx1 dx2

]1/2

(5.17)
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which is the desired upper bound.
Under the assumptions thatE(0) andE1(0) are bounded, an upper bound forE1(z) in

terms ofE(0) may be obtained, wherez > 0. These assumptions, as already shown, imply
thatH(x3) 6 0, L(x3) 6 0, x3 > 0, and hence the previous decay estimates and asymptotic
behaviour, are valid. Therefore it follows from (3.16), (3.20) that

2E1(x3) = −J ′(x3), x3 > 0, (5.18)

and so

2(x3 − z)E1(x3) 6 2
∫ x3

z

E1(η)dη = −J (x3)+ J (z) 6 E(z), x3 > z > 0.

Hence, it may be concluded that

E1(x3) 6 E(0)/2x3, x3 > 0. (5.19)

Upon integration of (4.25) over the interval(z, x3), it is easy to prove that the previous
decay estimates continue to hold with obvious modification. For example, (5.2) becomes

E(x3)+ νE1(x3) 6 [E(z)+ νE1(z)] e−γ (x3−z), x3 > z (5.20)

6 E(0)

[
1+ ν

2z

]
e−γ (x3−z), x3 > z. (5.21)

Thus, provided attention is confined to an interval[z,∞), z > 0, the amplitude appearing in
the various decay estimates depends onE(0) which has been bounded in terms of the data on
D(0) (see (5.13)). Of course, in the limitz→ 0, this amplitude becomes infinite.

Explicit dependence of certain decay estimates onE1(0)may be removed, again under the
assumption thatE(0), E1(0) are bounded. Thus, application of Schwarz’s inequality together
with (5.8) to (3.1) leads to

|H(x3)| 6 µ

[∫
D(x3)

uiui dx1 dx2

∫
D(x3)

ui,3ui,3 dx1 dx2

]1/2

+
[∫

D(x3)

p2 dx1 dx2

∫
D(x3)

u2
3 dx1 dx2

]1/2

6 µλ
−1/2
1

[∫
D(x3)

ui,αui,α dx1 dx2

∫
D(x3)

ui,3ui,3 dx1 dx2

]1/2

+µλ−1/2
1 k3

∫
D(x3)

ui,αui,α dx1 dx2, (5.22)

whereµk3 =
(
k1λ
−1/2
1 + k2

)1/2
and Poincaré’s inequality has been used. The arithmetic-

geometric mean inequality, with optimum choice of arbitrary constant, then gives

|H(x3)| 6 γ −1
1 H ′(x3), (5.23)
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where

γ1 = 2λ1/2
1

(√
k2

3 + 1− 1

)
. (5.24)

Under the assumption that the energiesE(0), E1(0) are bounded, it is known thatH(x3) 6
0, x3 > 0. (Note that without this assumption the asymptotic behaviour (5.3) may not be valid
and hence the inequality in [21] on which (5.8) is based may become vacuous.) Integration of
(5.23) then yields

−H(x3) 6 −H(0)e−γ1x3, x3 > 0,

= E(0)e−γ1x3, x3 > 0.
(5.25)

Results similar to (5.2), (5.3)1, (5.4) may be derived as before, but the amplitudes are now
expressed in terms only of the energyE(0).

6. Concluding remarks

New growth and decay estimates have been derived for various cross-sectional and volume
measures of the equilibrium solution to the laterally constrained cylinder composed of a linear
homogeneous incompressible elastic material. Decay always occurs in the class of solutions
with bounded stored energy. The rates of growth and decay both depend only upon the geo-
metry of the cylinder’s cross-section, while the amplitude involves only data on the base of
the cylinder. The special case of specified displacement on the base was considered in detail.
Similar estimates for the compressible problem have been intensely studied, but almost all
degenerate in the incompressible limit necessitating direct analyses of the present kind. The
results derived here are immediately applicable to the corresponding problem in steady state
Stokes flow along a pipe.

Practical applications to which the estimates might be relevant include bonding of rubber-
like materials to the walls of a cylindrical hole drilled in a comparatively rigid metal, as occurs
for example in certain sealant devices. The length of the hole need not be semi-infinite since
the treatment presented is valid irrespective of the cylinder’s length. Decay occurs in a finite
cylinder provided the end opposite the base has either the displacement or traction specified
pointwise zero, and the estimates might then be useful in certain contact problems. Other
examples concern fibre reinforcement, geological intrusions, and more generally any situation
requiring knowledge of edge effect penetration. It must be remarked, however, that similar
estimates in compressible elasticity display a disparity when compared with known exact
solutions and there is no reason to suppose the estimates derived here might possess greater
accuracy.

The treatment may be extended to elastodynamics, to anisotropic incompressible elasticity,
to other geometries, and to other constraints and other materials. The main purpose of this pa-
per, however, has been to avoid such complexities and instead to emphasise essential features
by application to a simple problem. Extensions are left for elsewhere.
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